Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 8: e10283, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240628

RESUMEN

The COVID-19 pandemic has caused global disruption, with the emergence of this and other pandemics having been linked to habitat encroachment and/or wildlife exploitation. High impacts of COVID-19 are apparent in some countries with large tropical peatland areas, some of which are relatively poorly resourced to tackle disease pandemics. Despite this, no previous investigation has considered tropical peatlands in the context of emerging infectious diseases (EIDs). Here, we review: (i) the potential for future EIDs arising from tropical peatlands; (ii) potential threats to tropical peatland conservation and local communities from COVID-19; and (iii) potential steps to help mitigate these risks. We find that high biodiversity in tropical peat-swamp forests, including presence of many potential vertebrate and invertebrate vectors, combined, in places, with high levels of habitat disruption and wildlife harvesting represent suitable conditions for potential zoonotic EID (re-)emergence. Although impossible to predict precisely, we identify numerous potential threats to tropical peatland conservation and local communities from the COVID-19 pandemic. This includes impacts on public health, with the potential for haze pollution from peatland fires to increase COVID-19 susceptibility a noted concern; and on local economies, livelihoods and food security, where impacts will likely be greater in remote communities with limited/no medical facilities that depend heavily on external trade. Research, training, education, conservation and restoration activities are also being affected, particularly those involving physical groupings and international travel, some of which may result in increased habitat encroachment, wildlife harvesting or fire, and may therefore precipitate longer-term negative impacts, including those relating to disease pandemics. We conclude that sustainable management of tropical peatlands and their wildlife is important for mitigating impacts of the COVID-19 pandemic, and reducing the potential for future zoonotic EID emergence and severity, thus strengthening arguments for their conservation and restoration. To support this, we list seven specific recommendations relating to sustainable management of tropical peatlands in the context of COVID-19/disease pandemics, plus mitigating the current impacts of COVID-19 and reducing potential future zoonotic EID risk in these localities. Our discussion and many of the issues raised should also be relevant for non-tropical peatland areas and in relation to other (pandemic-related) sudden socio-economic shocks that may occur in future.

2.
Conserv Biol ; 34(4): 934-942, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31840279

RESUMEN

Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.


Incorporación de la Conectividad a la Planeación de la Conservación para la Representación Óptima de Especies Múltiples y Servicios Ambientales Resumen Las tendencias de planeación de la conservación tienden a enfocarse en la protección de la distribución geográfica de las especies o en la conectividad de paisajes, pero rara vez se enfocan en ambas - particularmente para el caso de los ensamblajes taxonómicos y las metas múltiples de planeación. Por lo tanto, hay carencias en la información sobre las compensaciones potenciales entre mantener la conectividad de los paisajes y alcanzar otros objetivos de conservación. Desarrollamos una estrategia de optimización para priorizar la protección máxima de la distribución de las especies, los tipos de ecosistemas y los stocks de carbono de los bosques, a la vez que incluimos la conectividad del hábitat para las especies que modifican su distribución y los corredores de dispersión para conectar el área protegida. Aplicamos nuestra estrategia en Sabah, Malasia, en donde el gobierno estatal ordenó un incremento de ∼305, 000 ha en la cobertura de áreas protegidas sin especificar la ubicación de las nuevas áreas protegidas. En comparación con una estrategia de planeación de la conservación que no incorporó las dos características de la conectividad, nuestra estrategia incrementó la protección de los corredores de dispersión y la conectividad altitudinal en un 13% y 21% respectivamente. La cobertura de la distribución de las especies de plantas y vertebrados y de los tipos de bosque fue la misma con o sin la inclusión de la conectividad. Nuestra estrategia protegió 2% menos del carbono forestal y 3% menos de la distribución de mariposas que cuando no se incluyeron las características de conectividad en la estrategia. Por lo tanto, incluir a la conectividad en la planeación de la conservación puede generar grandes incrementos en la protección de la conectividad del paisaje con una pérdida mínima de representación para los demás objetivos de conservación.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Bosques , Malasia , Vertebrados
3.
J Ecol ; 103(1): 16-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26120202

RESUMEN

1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5.Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.

4.
Nat Commun ; 5: 3906, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24844297

RESUMEN

The time taken for forested tropical ecosystems to re-establish post-disturbance is of widespread interest. Yet to date there has been no comparative study across tropical biomes to determine rates of forest re-growth, and how they vary through space and time. Here we present results from a meta-analysis of palaeoecological records that use fossil pollen as a proxy for vegetation change over the past 20,000 years. A total of 283 forest disturbance and recovery events, reported in 71 studies, are identified across four tropical regions. Results indicate that forests in Central America and Africa generally recover faster from past disturbances than those in South America and Asia, as do forests exposed to natural large infrequent disturbances compared with post-climatic and human impacts. Results also demonstrate that increasing frequency of disturbance events at a site through time elevates recovery rates, indicating a degree of resilience in forests exposed to recurrent past disturbance.


Asunto(s)
Conservación de los Recursos Naturales , Fósiles , Desarrollo de la Planta , Polen , Bosque Lluvioso , África , Asia , Biodiversidad , América Central , Ecosistema , América del Sur , Factores de Tiempo
5.
Biol Lett ; 3(1): 86-9, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17443973

RESUMEN

A recent metabolic scaling theory predicts that plants minimize resistance to hydraulic conduction in the bulk transport network by narrowing the diameter of xylem conduits distally. We hypothesized that trees growing at high altitude or on nutrient-depleted soils would prioritize survival over minimizing hydraulic resistance, and that their vascular systems would be structured differently from those of trees growing under more benign conditions. In fact, conduits were observed to narrow towards the periphery of vascular system within all 45 trees of three species we investigated, and scaling relationships were indistinguishable across a range of environments. Thus, conduit tapering relationships appear to be invariant with respect to environmental conditions.


Asunto(s)
Altitud , Ecosistema , Suelo , Árboles/anatomía & histología , Xilema/anatomía & histología , Fagaceae/anatomía & histología , Picea/anatomía & histología , Pinus sylvestris/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...